
Lecture 14: Examples of Martingales and Azuma’s
Inequality

Concentration



A Short Summary of Bounds I

Chernoff (First Bound). Let X be a random variable over
{0, 1} such that P [X = 1] = p and P [X = 0] = 1− p.

P

 n∑
i=1

X(i) − np > t

 6 exp
(
−nDKL

(
p + t/n, p

))
Azuma, Hoeffding, Chernoff (Second Bound). For a
martingale difference sequence (∆F1, . . . ,∆Fn) such that Fi

takes values in the range [ai , bi ]. Then, we have

P

 n∑
i=1

∆Fi > t

 6 exp(− 2t2∑n
i=1(bi − ai )2 )
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A Short Summary of Bounds II

Talargrand. Let X = (X1, . . . ,Xn) be independent variables.
Talagrand inequality states that

P [X ∈ A]P
[
dT (X,A) > t

]
6 exp(−t2/4)

We can use this to show concentration of a configuration
function f (X1, . . . ,Xn) around its median.

Concentration



Hypergeometric Series I

Experiment.

There are N balls in a box. Among these balls, at time t = 0,
there are R = pN red balls, and B = (1− p)N blue balls

At any time, we draw a random ball from the box (and we do
not replace the ball back in the box).

We are interested in understanding the concentration of the
random variable representing the total number of red balls
seen at the end of time n.

We assume that N � n, i.e. the bin never runs out of balls in
our experiment
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Hypergeometric Series II

Formalization.

We shall represent a red balls by 1, and a blue ball by 0

The variables (X1, . . . ,Xn) represent the balls we draw at time
1, . . . , n, respectively

We are interested in understanding the concentration of the
random variable Sn =

∑n
i=1 Xi . Note that the probability of

Xi = 1 depends on the sum Si−1 =
∑i−1

j=1 Xj .

By linearity of expectation we had already concluded that

ESn = np
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Hypergeometric Series III

Constructing a Martingale.
Suppose we have already seen X1 = ω1, . . . ,Xk = ωk

The total number of red balls in the box is R ′ = Np − Sk , and
the total number of blue balls in the box at this time is
B ′ = N(1− p)− k + Sk . Recall that we have Sk =

∑k
i=1 Xi .

Then, the expected number of red balls seen in the future is

(n − k)
Np − Sk
N − k

Let us define the random variable, for k ∈ {0, . . . , n},

Fk = Sk + (n − k)
Np − Sk
N − k
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Hypergeometric Series IV

(F0, . . . ,Fn) is the Doob’s martingale corresponding to the
function

f (X1, . . . ,Xn) =
n∑

i=1

Xi

Note that Fn = Sn and F0 = np

Let the martingale difference sequence corresponding to this
martingale be (∆F1, . . . ,∆Fn)

In this martingale difference sequence, we have

(bi − ai ) = 1− n − i

N − i
=

N − n

N − i
6 1
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Hypergeometric Series V

Azuma’s inequality on the corresponding martingale difference
sequence yields

P [Sn − np > t] 6 exp

− 2t2∑n
i=1

(
N−n
N−i

)2


6 exp

(
−2t2

n

)

Note that E [Sn] = np.
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Póly’s Urn I

Experiment.

There are N balls in an urn. Among these balls, at time t = 0,
there are R red balls, and B = (N − R) blue balls

At any time, we draw a random ball from the urn. If the color
of the ball is red, then we replace the ball and add one new red
ball to the urn. If the color of the ball is blue, then we replace
the ball and add one new blue ball to the urn.

We are interested in understanding the concentration of the
random variable representing the total number of red balls
seen at the end of time n.
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Póly’s Urn II

Formalization.

We shall represent a red ball by 1, and a blue ball by 0.

The variables (X1, . . . ,Xn) represent the balls we draw at time
1, . . . , n, respectively.

We are interested in understanding the concentration of the
random variable Sn :=

∑n
i=1 Xi . Note that the probability of

Xi = 1 depends on the sum Si−1 =
∑i−1

j=1 Xj .
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Póly’s Urn III

Lemma

E [Sn] = n
R

R + B

The proof of this theorem using induction on n is left as an easy
exercise.
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Póly’s Urn IV

Constructing a Martingale.
Suppose we have already seen X1 = ω1, . . . ,Xk = ωk

The total number of red balls in the urn at this time is
R ′ = R +

∑k
i=1 Xi , and the total number of blue balls in the

urn at this time is B ′ = B + k −
∑k

i=1 Xi . Recall that we have
Sk =

∑k
i=1 Xi .

Then, the expected number of red balls seen in the future is

(n − k)
R ′

R ′ + B ′

Let us define the random variable, for all k ∈ {0, . . . , n},

Fk = Sk + (n − k)
R + Sk
N + k
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Póly’s Urn V

(F0, . . . ,Fn) is the Doob’s martingale corresponding to the
function

f (X1, . . . ,Xn) =
n∑

i=1

Xi

Note that Fn = Sn and F0 = nR
N

Let the martingale difference sequence corresponding to this
martingale be (∆F1, . . . ,∆Fn)

In this martingale difference sequence, we have

(bi − ai ) = 1 +
n − i

N + i
=

N + n

N + i
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Póly’s Urn VI

Azuma’s inequality on the corresponding martingale difference
sequence yields

P
[
Sn − n

R

N
> t

]
6 exp

− 2t2∑n
i=1

(
N+n
N+i

)2


6 exp

(
− 2t2

n(1 + n/N)

)

Note that E [Sn] = nR
N .
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